STUDENT NAME:

Linear Algebra Graduate Comprehensive Exam, January 2017
 Worcester Polytechnic Institute

Work out at least 6 of the following problems

Write down detailed proofs of every statement you make.
No Books. No Notes. No calculators.

1. Consider the following matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
0 & 4 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

(i) Find the transformation matrix M, and its inverse, such that $A=$ $M J M^{-1}$ is the Jordon canonical form of A.
2. Consider the linear vector space \mathbb{C}^{n} with inner product $\langle x, y\rangle=\sum_{i=1}^{n} \bar{x}_{i} y_{i}$ for $x, y \in \mathbb{C}^{n}$. (i) Prove the Cauchy-Schwarz inequality.
3. Let A be a $n \times m$ real matrix. (i) Prove that $A x=b$ has at least one solution if and only if $b \in \mathcal{N}\left(A^{T}\right)^{\perp}$.
4. The Tchebyshev polynomials (with real coefficients) $T_{0}(x), T_{1}(x), T_{2}(x), \ldots, T_{n}(x)$ on the interval $[-1,1]$ can be characterized by:
(1) For each $0 \leq i \leq n$, the polynomial $T_{i}(x)$ has degree i
(2) For each $0 \leq i \leq n, T_{i}(1)=1$
(3) For each $0 \leq i \leq n$ and $0 \leq j \leq n$ such that $i \neq j, T_{i}$ and T_{j} are orthogonal with respect to the following weighted inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) \frac{1}{\sqrt{1-x^{2}}} d x
$$

(i) Find $T_{0}(x), T_{1}(x)$ and $T_{2}(x)$. Hint: Use $x=-\cos (\theta)$
5. (i) Find the Euclidean orthogonal projection of the vector w on the subspace $S=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ described by

$$
w=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \quad v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \quad \text { and } \quad v_{2}=\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right)
$$

6. Let A be $n \times m$ real matrix. (i) If the eigenvalues of A are all distinct, then A is diagonalizable. (ii) If in addition $A=A^{T}$, then the eigenvectors are orthogonal to each other.
7. Let A and B be two $n \times n$ matrices. (ii) Prove that $\operatorname{Rank}(A B) \leq$ $\min \{\operatorname{Rank}(A), \operatorname{Rank}(B)\}$
